A density Hales-Jewett theorem for matroids

نویسندگان

  • James F. Geelen
  • Peter Nelson
چکیده

We show that if α is a positive real number, n and ` are integers exceeding 1, and q is a prime power, then every simple matroid M of sufficiently large rank, with no U2,`-minor, no rank-n projective geometry minor over a larger field than GF(q), and at least αq elements, has a rank-n affine geometry restriction over GF(q). This result can be viewed as an analogue of the multidimensional density Hales-Jewett theorem for matroids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Odd circuits in dense binary matroids

The exclusion of odd circuits from a binary matroid here is natural. The geometric density Hales-Jewett theorem [3] implies that dense GF(q)representable matroids with sufficiently large rank necessarily contain arbitrarily large affine geometries over GF(q); these geometries contain circuits of every possible even cardinality when q= 2 and circuits of every possible cardinality when q>2. So de...

متن کامل

Corners in Cartesian products

This note is an illustration of the density-increment method used in the proof of the density Hales-Jewett theorem for k = 3. (Polymath project [2]) I will repeat the argument applying it to a problem which is easier than DHJ. In the last section I will describe the proof of the density Hales-Jewett theorem for k = 3. The results stated here are direct interpretations of the project’s results, ...

متن کامل

A Variant of the Hales-jewett Theorem

It was shown by V. Bergelson that any set B ⊆ N with positive upper multiplicative density contains nicely intertwined arithmetic and geometric progressions: For each k ∈ N there exist a, b, d ∈ N such that ̆ b(a + id) : i, j ∈ {1, 2, . . . , k} ̄ ⊆ B. In particular one cell of each finite partition of N contains such configurations. We prove a Hales-Jewett type extension of this partition theorem.

متن کامل

A Note on Multiparty Communication Complexity and the Hales-Jewett Theorem

For integers n and k, the density Hales-Jewett number cn,k is defined as the maximal size of a subset of [k] that contains no combinatorial line. We prove a lower bound on cn,k, similar to the lower bound in [16], but with better dependency on k. The bound in [16] is roughly cn,k/k n ≥ exp(−O(log n)2 ) and we show cn,k/k n ≥ exp(−O(log n)). The proof of the bound uses the well-known constructio...

متن کامل

A variant of the density Hales-Jewett theorem

In a recent paper “A variant of the Hales-Jewett theorem”, M. Beiglböck provides a version of the classic coloring result in which an instance of the variable in a word giving rise to a monochromatic combinatorial line can be moved around in a finite structure of specified type (for example, an arithmetic progression). We prove a density version of this result in which all instances of the vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2015